Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?
نویسندگان
چکیده
Statistical model selection criteria provide an informed choice of the model with best external (i.e., out-of-sample) validity. Therefore they guard against overfitting (“data snooping”). We implement several model selection criteria in order to verify recent evidence of predictability in excess stock returns and to determine which variables are valuable predictors. We confirm the presence of in-sample predictability in an international stock market dataset, but discover that even the best prediction models have no out-of-sample forecasting power. The failure to detect out-of-sample predictability is not due to lack of power.
منابع مشابه
Three Approaches to Time Series Forecasting of Petroleum Demand in OECD Countries
Petroleum (crude oil) is one of the most important resources of energy and its demand and consumption is growing while it is a non-renewable energy resource. Hence forecasting of its demand is necessary to plan appropriate strategies for managing future requirements. In this paper, three types of time series methods including univariate Seasonal ARIMA, Winters forecasting and Transfer Function-...
متن کاملStatistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کاملNonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)
Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملSelecting Forecasting Methods
I examined six ways of selecting forecasting methods: Convenience, “what’s easy,” is inexpensive, but risky. Market popularity, “what others do,” sounds appealing but is unlikely to be of value because popularity and success may not be related and because it overlooks some methods. Structured judgment, “what experts advise,” which is to rate methods against prespecified criteria, is promising. ...
متن کامل